Progression in Reasoning

| EYFS | Key learning | Examples of reasoning | Vocabulary and thinking terms |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | To engage with rich contexts for exploring
 mathematical ideas, making useful connections and
 developing mathematical skills and concepts
 Make connections to the theme and connect the
 learning to the play. | Stories - planning your way through a story,
 making choices.
 Thematic approaches (seasons) for sorting and
 matching to criteria.
 Environment connections (home and role play,
 small world, construction and malleable play) | Tell me
 Why did you choose?
 How many do you have altogether?
 What if we had more?
 What is we had something different?
 What if you had one other the same?
 Is there another way of doing it?
 What would you like to do next? |

(Models of Proof/Evidence

Progression in Reasoning

	The children had to share the 6 carrots between 3 rabbits and they stated how many each rabbit should have.	$2,4,6,8$ consecutive evens 16 is an even number because the unit digit is even Complete the sequence Prove how this model shows that 7 cannot be an even number.	Annotate the diagram to prove this generalisation. What if I added 4 more counters to the diagrams, what would change and what would stay the same?
Year 1	Key learning	Examples of reasoning	Vocabulary and thinking terms
	To apply conceptual knowledge to recognise patterns and relationships, to show results using clear mathematical models such as practical apparatus, diagrams or number sentences.	Subitising and representing amounts. Make 12 using concrete resources. Show as many ways you can to make different amounts.	Show me different ways to... True or false What is the same and what is different? Spot the mistake What comes next? What do you notice? Convince me

Progression in Reasoning

Progression in Reasoning

Progression in Reasoning

Year 2	Key learning	Examples of reasoning	Vocabulary and thinking terms
	To apply conceptual knowledge to recognise patterns and relationships, to explain results using clear mathematical models such as practical apparatus, diagrams or number sentences. Kemi mokes a pattern with sticks. Some are long and some are short. She writes a number pattern on the sticks. Write the number that will be on the next short stick Is it possible to make the odd totals without using the 3 ?	Mathematical modelling - effect of 0 , odds and evens (generalisations). Children predict and make a summary of their findings. 'odd + odd = odd' Modelling the counter example Empty box equations $10+2=9+$ \qquad convince me that the number in the missing box is 3 . 130 + \square $=70$ SATS focus. Develop strategies for undoing $? \rightarrow x 2 \rightarrow+6 \rightarrow 24$	Show me Convince me Model of proof Satisfying a rule Why and why not What else do you know? Use a fact to prove or disprove True or false What number is missing? Odd one out Find one ... Find all... Undoing (working backwards) using the inverse

6

Progression in Reasoning

	Sum up Choose from these four cards. $2 \pi-8$ Make these totals: What other totals can you make from the cards?	Odd one out - 3 different numbers $40,65,71$ - which is the odd one out? Explain your reasoning (justify and prove). 71 - it's not a multiple of 5 40 - it's a multiple of 10 , it's even 65 - it has one odd and one even digit	
	Models of Proof/Evidence	Specialising is about starting with something general and seeing what it tells us about a specific case.	Generalising is about starting with specific cases and becoming less specific.
	Use this model of proof to show how any addition can be reordered. $+$	$35+\ldots=75$ Use the inverse to solve this calculation. Example Sally says she thinks the missing number is 40. Simon thinks the missing number is 4. Who is correct? Explain your answer using mathematical vocabulary of inverse. Extension Simon was incorrect. Can you explain to Simon why he is incorrect?	Addition and Subtraction The inverse of addition is subtraction. The inverse of subtraction is addition.

Progression in Reasoning

		Addition makes a larger total. Subtraction makes the answer smaller Rules of Divisibility Any even number will divide equally by 2 $\begin{aligned} & 20 \div 2=10 \\ & 10 \times 2=20 \end{aligned}$ All multiples of 5 end in a 5 or 0 $\begin{aligned} & \underline{35} \div 5=7 \\ & 5 \times 8=\underline{40} \end{aligned}$ All multiples of 10 end in a 0 $\begin{aligned} & 100 \div 10=10 \\ & 10 \times 10=100 \end{aligned}$	Multiplication and division The inverse of multiplication is division The inverse of division is multiplication Example Why and why not? Rules of Divisibility $2 \times 3=6,10 \times 2=20$ Any even number will divide equally by 2 ; even $5 \times 5=25,5 \times 6=30$ All multiples of 5 end in a 5 or 0 ; odd or even

Progression in Reasoning

Progression in Reasoning

Year 3	Key learning	Examples of reasoning	Vocabulary and thinking terms
Y3	To apply conceptual knowledge to use patterns, relationships and properties of number to begin with generalising. To explain results using clear mathematical models such as practical apparatus, diagrams or number sentences as models of proof. Finding starting points with reasoned argument for logic.	Empty box questions with unknowns and different patterns of variables. $\begin{aligned} & 24+\square=15+15-\text { unknown } \\ & 24+\square=15+\square-\text { patterns of variables } \\ & 0 \text { and } 9 \\ & 1 \text { and } 10 \\ & 2 \text { and } 11 \end{aligned}$ Odd one out Explain your choice.	Show me Convince me Why and why not, what if Model of proof Satisfying a rule What else do you know? Use a fact True or false What number is missing? Odd one out Undoing (working backwards) Always, sometimes, never. Variables (find all/enough) Logical reasoning

Progression in Reasoning

Progression in Reasoning

Progression in Reasoning

| | | Variable
 A variable refers to a set of changing values.
 Impossible! Find the RIGHT answer. Find the WRONG
 answer and find the IMPOssIBLE answer.
 Sally says "The values of the green and yellow parcels will
 always be 1 and half kg because $2.5 \mathrm{~kg}-1 \mathrm{~kg}=1.5 \mathrm{~kg}$ "
 Simon says "The values will always change depending on
 the total weight of each side of the scale." |
| :---: | :---: | :--- | :--- |
| Sam says "To find the missing values you have to add the | | |
| missing values together." | | |

Progression in Reasoning

Year 4	Key learning	Examples of reasoning	Vocabulary and thinking terms
	To apply conceptual knowledge to use patterns, relationships and properties of number to draw conclusions and make general statements. Lines of enquiry are generated and justified with mathematical models. To explain results clearly using appropriate representations and communications to offer a proof. Jenny is thinking of a number. She says, "My number is a multiple of 4. It is also 3 less than a multiple of 5 " Find three different numbers that fit Jenny's description.	Unknowns and variables linked to multiplication at this stage in Year 4. Why or why not? Doubling a number is always bigger Any number that is divisible by 3 is also divisible by 6 . Pupils need to know that they only need one example when disproving a statement that can never be true. You cannot change the order of a times table. Correspondence problems How many different possibilities? ' 5 t-shirts and 3 trousers make 15 possibilities." Lines of enquiry 'If I add 2 or more consecutive numbers, I can make all the counting numbers from 3 to 20^{\prime}. Children need to know that lines of enquiry are not just one answer, they need to be able generalise and prove. Rules of Divisibility Divisible by 4, if the last two numbers are divisible by 4 the whole number is. $7 \underline{44}$ Associative law When adding it doesn't matter how we group the numbers (i.e. which we calculate first).	Show me Convince me Model of proof Satisfying a rule What else do you know? Use a fact True or false What number is missing? Odd one out Undoing (working backwards) Always, sometimes, never. Variables (find all/enough) Logical reasoning Undoing Why? Why not? Always, sometimes, never Make and create general statements.

Progression in Reasoning

	20 15 25 20 20 20 The value of the yellow circle $=5$.	Example addition: $(6+3)+4=6+(3+4)$ Because 9+4=6+7=13 Also when multiplying it doesn't matter how we group the numbers. Example multiplication: $(2 \times 4) \times 3=2 \times(4 \times$ 3) Because $8 \times 3=2 \times 12=24$	
	Models of Proof/Evidence	Specialising is about starting with something general and seeing what it tells us about a specific case.	Generalising is about starting with specific cases and becoming less specific.
	Models of Proof	Specialising $1,2,3,4,6,9,12,18$ and 36 are all factors of 36. $-1,-2,-3, \ldots . .-15$ Correspondence Problems	Generalising A factor is a number that will divide equally into a larger number. A negative number is a number that is less than zero. Negative numbers are opposite to positive numbers. Correspondence Problems

Progression in Reasoning

Progression in Reasoning

Progression in Reasoning

Year 5	Key learning	Examples of reasoning	Vocabulary and thinking terms
Y5	To apply conceptual knowledge to make generalisations, conjecture relationships and provide sophisticated models of proof, including enquiry and reasoned argument. The number in \mathbf{A} is twice the number in \mathbf{D}. The number in \mathbf{B} is $\mathbf{5}$ less than the number in \mathbf{C}. The number in \mathbf{D} is 10 more than the number in \mathbf{B}. Write the missing numbers in this diagram. Now use the same rule for this diagram. Each number is less than 10 \square $\$ \times \square \times \square $=105$	Generalise and develop a conjecture Tests of divisibility Ensure that all children know the tests of divisibility (will it need a remainder?) 2 - even $5-5,0$ 10-0 $436 \div 3=$ To know that the digit sum must add to a multiple of 3 to divide by 3 without a remainder. 6 -if a number is even and adds to a multiple of 3 then the number will divide by 6 . 9 - if the number adds to a multiple of 9 it will divide by 9 . Rearranging dividends $354 \div 6=59$ 300 and 54 50 and 9 $744 \div 4=186$ 600 and 100 and 44 $150+25+11$ Conjectures examples All prime numbers are odd All odd numbers can be generated from 2 or more prime numbers. - Children will then be able to generalise and provide statements of proof.	Show me Convince me Model of proof Satisfying a rule What else do you know? Use a fact True or false What number is missing? Odd one out Undoing (working backwards) Always, sometimes, never. Variables Logical reasoning Undoing Why? Why not? Always, sometimes, never Make and create general statements. Why? Why not? What if? Conjecture then proves Testing conditions (tests of divisibility/rearranging dividends).

Progression in Reasoning

Progression in Reasoning

	Consecutive number sequences	Erica says 'To find a cube number, you square it first then double your answer. Explain to Erica why she is not correct.	Cube Numbers A cube number is the product of a number by itself three times. E.g. $10 \times 10 \times 10=1000$
Year 6	Key learning	Examples of reasoning	Vocabulary and thinking terms
Y6	To apply conceptual knowledge to make generalisations, conjecture relationships and provide sophisticated models of proof, including formula and reasoned argument. Expression: $2 \mathrm{a}+4 \mathrm{~b}$ Equation: $3 x-5=20$ Formula: $\mathrm{P}=2 \mathrm{a}+2 \mathrm{~b}$	We now focus on the third level of proof formula and expressions for linear sequences Constructed models of proof Concrete Examples to satisfy the rule $\begin{aligned} & 1+2+3=6 \\ & 2+3+4=9 \\ & 3+4+5=12 \end{aligned}$ Formula $N+(n+1)+(n+2)=3 n+3$ Use a hundred square to track the formula. In the sequence 1, 4, 7, 10 the $100^{\text {th }}$ term =298. Is this true? Prove it. How to solve it;	Show me Convince me Model of proof Satisfying a rule What else do you know? Use a fact True or false What number is missing? Odd one out Undoing (working backwards) Always, sometimes, never. Variables Logical reasoning Undoing Why? Why not? Always, sometimes, never Make and create general statements. Why? Why not? Conjecture and proof Testing conditions (tests of divisibility/rearranging dividends).

Progression in Reasoning

Progression in Reasoning

Models of Proof/Evidence	Specialising is about starting with something general and seeing what it tells us about a specific case.	Generalising is about starting with specific cases and becoming less specific.
Here are the numbers. Witle each number on the correct cards. The number 2 has been written on the correct cards for you. Here are some number cards 2 3 1 5 Choose three different cards to make a three-digit prime number \square	Factors divide equally into a number. $2,3,4$ and 6 are factors of 12 . 3 and 5 are factors of 15. Prime numbers have two factors, one and itself. 2,3 and 5 are prime numbers. Conjecture Any prime greater than 3 can be found one before or one after a multiple of 6 . $6 n+1$ or $6 n-1$. Is this true? The Test for Prime Numbers Is 191 a prime number? Use your tests of divisibility if none of them fit try the next step. Now divide 191 by 6, what remainder are you left with? Use this table to help you.	12 and 15 are in the 3 times tables so cannot be prime as they have more than two factors. Prime numbers have two factors, one and itself. 2 cannot be a factor of 15 because all multiples of 2 are even. 89 is a prime number. Prime numbers greater than 5 will have a remainder of 1 or 5 when divided by 6 . $\begin{aligned} & 89 \div 6=14 r 5 \\ & 97 \div 6=16 r 1 \end{aligned}$ Prove that 97 is also prime. Tests of divisibility. Not all numbers with a remainder of 5 or 1 when divided by 6 are prime. $25 \div 6=4 \mathrm{r} 1$ - counter example

Progression in Reasoning

